Volumetric Analysis

Objectives

1. Concentrations of Solutions
 - define solution
 - define concentration
 - define molarity
 - express concentration of solutions in mol/L (molarity), g/L and also in % (w/v), % (v/v), % (w/w)
 - appreciate the everyday use of % v/v e.g. in alcoholic beverages
 - calculate molarity from concentration in grams per litre and vice versa
 - calculate number of moles from molarity and volume
 - perform simple calculations involving percentage concentrations
 - calculate the effect of dilution on concentration
 - apply knowledge of concentrations of solutions to everyday examples
 - describe how colour intensity can be used as an indicator of concentration
 - define a primary standard and a standard solution
 - prepare standard solution of sodium carbonate
 - identify appropriate apparatus used in volumetric analysis
 - use correct titrimetric procedure when carrying out titrations
 - solve volumetric problems from first principles
 - carry out a titration between hydrochloric acid and sodium hydroxide solutions and use this titration to make a sample of sodium chloride (OL only)
 - standardise a hydrochloric acid solution using a standard solution of sodium carbonate
 - calculate the relative molecular mass of a compound and of the amount of water of crystallisation in a compound from titration data
 - determine the concentration of ethanoic acid in vinegar
 - determine the amount of water of crystallisation in hydrated sodium carbonate

2. Volumetric Analysis
 (balanced equations will be given in all volumetric problems)

 - identify appropriate apparatus used in volumetric analysis
 - use correct titrimetric procedure when carrying out titrations
 - solve volumetric problems from first principles
 - carry out a titration between hydrochloric acid and sodium hydroxide solutions and use this titration to make a sample of sodium chloride (OL only)
 - standardise a hydrochloric acid solution using a standard solution of sodium carbonate
 - calculate the relative molecular mass of a compound and of the amount of water of crystallisation in a compound from titration data
 - determine the concentration of ethanoic acid in vinegar
 - determine the amount of water of crystallisation in hydrated sodium carbonate

Definition: A solution is a homogeneous mixture of a solute and a solvent.

Definition: The concentration of a solution is the amount of solute dissolved in a given volume of the solution.

1. \(\%(w/w)\)
 Means grams of solute per 100 g of solution, or g/100g.
 E.g. saline solution, 1\% (w/w) NaCl = 1 g NaCl in 100 cm\(^3\) solution.

2. \(\%(w/v)\)
 Means grams of solute per 100 cm\(^3\) of solution, or g/100 cm\(^3\).
 E.g. 37\% (w/v) HCl = 37 g HCl in 100 cm\(^3\) solution.

3. \(\%(v/v)\)
 Means volume of solute per 100 cm\(^3\) of solution, or cm\(^3\)/100 cm\(^3\).
 E.g. Alcoholic drinks – Vodka’s alcohol (ethanol) concentration is 37.5\% (v/v) = 37.5 cm\(^3\) ethanol in 100 cm\(^3\) vodka.

4. Parts per Million (ppm)
 Means the concentration in mg/L. This is calculated by multiplying the concentration in g/L by 1000.
 1000mg = 1 g.
5. **Molarity (M or mol/L)**

This is the main unit used in the chemistry course. This means the number of moles of solute in 1 litre of solution. E.g. A 0.125 M solution of KMnO₄ has 0.125 moles of KMnO₄ in 1 litre of solution.

Calculations

(a) **mol/L to g/L**

1. How many grams of FeSO₄ are present in a solution marked 0.35 M FeSO₄?

 \[M_r \text{ of } [\text{FeSO}_4] = (56) + (32) + 4(16) = 152 \]

 We have 0.35 mol/L FeSO₄

 \[\times 152 \quad [\text{mol to g } \rightarrow \times M_r] \]

 =53.2 g/L

2. Calculate the concentration in grams per litre of bench hydrochloric acid whose concentration is 12 mol/L.

 \[M_r \text{ of HCl} = (1) + (35.5) = 36.5 \]

 We have 12 mol/L HCl

 \[\times 36.5 \quad [\text{mol to g } \rightarrow \times M_r] \]

 =438 g/L HCl

(b) **g/L to mol/L**

1. What is the molarity of a solution that contains 7.36 g of NaOH per litre of solution?

 \[M_r \text{ of NaOH} = (23) + (16) + (1) = 40 \]

 We have 7.36 g/L NaOH

 \[\div 40 \quad [\text{g to mol } \rightarrow \div M_r] \]

 0.184 mol/L NaOH

2. Calculate the concentration of a solution containing 45 g of sulphuric acid in a litre of solution.

 \[M_r \text{ of } \text{H}_2\text{SO}_4 = 2(1) + (32) + 4(16) = 98 \]

 We have 45 g/L H₂SO₄

 \[\div 98 \quad [\text{g to mol } \rightarrow \div M_r] \]

 0.4592 mol/L H₂SO₄

(c) **How many moles in a certain volume, given the solution’s molarity**

1. Calculate how many moles of CH₃COOH are present in 25 cm³ of 0.55 M CH₃COOH.

 We have 0.55 mol/L CH₃COOH

 \[\frac{0.55}{1000} \times 25 \]

 =0.01375 mol/25 cm³ CH₃COOH

 If question was phrased “Calculate how many grams of CH₃COOH are present in 25 cm³ of 0.55 M CH₃COOH”, we would then have to multiply 0.01375 by the Mᵣ of CH₃COOH.
2. How many moles of HCl are present in 60 cm\(^3\) of 0.4 M HCl?

We have 0.4 mol/L HCl

\[
\frac{0.4}{1000} \times 60 = 0.024 \text{ mol/60 cm}\(^3\) \text{ HCl}
\]

(d) Calculate moles per litre, given the mass of solute and volume of solution

1. Calculate the concentration in moles per litre of a solution containing 45 grams of sulphuric acid per 240 cm\(^3\) of solution.

\[
\text{Mr of H}_2\text{SO}_4 = 2(1) + (32) + 4(16) = 98
\]

We have 45 g/240 cm\(^3\) H\(_2\)SO\(_4\)

\[
\div 98 \quad \text{[g to mol} \rightarrow \div \text{Mr]} = 0.4592 \text{ mol/240 cm}\(^3\) \text{ H}_2\text{SO}_4
\]

\[
\frac{0.4592}{240} \times 1000 = 1.193 \text{ mol/L H}_2\text{SO}_4
\]

2. 7.6 g of anhydrous Na\(_2\)CO\(_3\) is dissolved in deionised water and made up to 300 cm\(^3\) of solution. Express the concentration of this solution in mol/L.

\[
\text{Mr of Na}_2\text{CO}_3 = 2(23) + (12) + 3(16) = 106
\]

We have 7.6 g/300 cm\(^3\) Na\(_2\)CO\(_3\)

\[
\div 106 \quad \text{[g to mol} \rightarrow \div \text{Mr]} = 0.0717 \text{ mol/300 cm}\(^3\) \text{ Na}_2\text{CO}_3
\]

\[
\frac{0.0717}{300} \times 1000 = 0.239 \text{ mol/L Na}_2\text{CO}_3
\]

(e) Compound calculations (combinations of (a) to (d))

1. What mass of sodium hydroxide is contained in 25 cm\(^3\) of a 1.5 M solution of sodium hydroxide?

\[
\text{Mr of NaOH} = (23) + (16) + (1) = 40
\]

We have 1.5 mol/L NaOH

\[
\times 40 \quad \text{[mol to g} \rightarrow \times \text{Mr]} = 60 \text{ g/L NaOH}
\]

\[
\frac{60}{1000} \times 25 = 1.5 \text{ g/25 cm}\(^3\) \text{ NaOH}
\]

2. What volume of 0.01 M KMnO\(_4\) solution will contain 5 g of KMnO\(_4\)?

\[
\text{Mr of KMnO}_4 = (39) + (55) + 4(16) = 158
\]

We have 0.01 mol/L KMnO\(_4\)

\[
\times 158 \quad \text{[mol to g} \rightarrow \times \text{Mr]} = 1.58 \text{ g/L KMnO}_4. \text{ This can be rewritten as } 1.58 \text{ g/1000 cm}\(^3\) \text{ KMnO}_4
\]

\[
\div 1.58 = 1 \text{ g/632.9 cm}\(^3\) \text{ KMnO}_4
\]

\[
\times 5 = 5 \text{ g/3164.6 cm}\(^3\) \text{ KMnO}_4
\]
Dilution of solutions

To find the volume of a concentrated solution needed to make a less concentrated solution, use the formula:

\[V_c \times M_c = V_d \times M_d \]

- \(V_c \) = Volume of concentrated solution
- \(V_d \) = Volume of dilute solution
- \(M_c \) = Molarity of concentrated solution
- \(M_d \) = Molarity of dilute solution

Examples:

1. What volume of 12 M HCl is needed to make up 500 cm\(^3\) of 3 M HCl solution?

\[
V_c \times M_c = V_d \times M_d \\
V_c \times 12 = 500 \times 3 \\
\frac{500 \times 3}{12} = V_d \\
125 \text{ cm}^3 = V_d
\]

2. 15 cm\(^3\) of 2 M HNO\(_3\) solution is diluted to 250 cm\(^3\) in a volumetric flask. What is the new concentration of the nitric acid?

\[
V_c \times M_c = V_d \times M_d \\
15 \times 2 = 250 \times M_d \\
\frac{250}{15 \times 2} = M_d \\
0.12 \text{ M} = M_d
\]

Standard Solutions

Def°: A **standard solution** is one whose concentration is accurately known.

Def°: A **primary standard** is a substance that can be directly weighed and used to make a standard solution. It must:
- Be available in a pure and stable solid state
- Be soluble in water
- Have a high molecular mass
- Be anhydrous (no water of crystallisation)

Primary Standards: \(\text{Na}_2\text{CO}_3, \text{NaCl} \)

Not Primary Standards:
- \(\text{HCl} \) – it is a gas
- \(\text{I}_2 \) – it sublimes
- \(\text{H}_2\text{SO}_4 \) – it absorbs moisture from air
- \(\text{NaOH} \) – it absorbs \(\text{CO}_2 \) and moisture from air
- \(\text{KMnO}_4 \) – it is reduced by sunlight
Equipment used in Titrations

1. **Pipette:**
 Used to accurately measure a known volume of liquids/solutions.

 Procedure for cleaning, filling and transferring solutions using a pipette:
 - Rinse with dionised water.
 - Rinse with the solution it is to contain (name this solution if you know). *[This is done to remove the water, so the solution in the pipette doesn’t get diluted.]*
 - Using a pipette filler, fill pipette with solution until the bottom of the meniscus reaches the graduation mark, at eye level.
 - Let the pipette drain under gravity, touching the tip of the pipette against the flask to remove the last drop stuck to the tip.

2. **Burette:**
 Used to accurately measure the volume of liquid/solution added.

 Procedure for cleaning and filling a burette:
 - Rinse with deionised water.
 - Rinse with the solution it is to contain (name this solution if you know). *[This is done to remove the water, so the solution in the burette doesn’t get diluted.]*
 - Clamp vertically.
 - Using a funnel, fill the burette above the zero mark.
 - Remove the funnel.
 - Open the tap to bring the bottom of the meniscus to the zero mark, and to fill the jet below the tap.

3. **Conical Flask:**
 A specially shaped flask that allows swirling without spilling the contents.

 Procedure for cleaning the conical flask:
 - Clean with deionised water only. *[Any water droplets remaining won’t change the number of moles of reactant you add].*

Acid/Base Titrations:

1. **To standardise a solution of HCl using a standard solution of Na₂CO₃.**
 Acid: HCl – strong acid
 Base: Na₂CO₃ – weak base
 Indicator: Methyl Orange (SAWBMO)
 Colour change: Yellow to Red
 Equation: \(2\text{HCl} + \text{Na}_2\text{CO}_3 \rightarrow \text{NaCl} + \text{H}_2\text{O} + \text{CO}_2 \)
 Ratio: 2 HCl : 1 Na₂CO₃

G. Galvin
Sample calculation: (2012 HL Q1)

A student determined the concentration of a hydrochloric acid solution by titration with 25.0 cm3 portions of a 0.05 M primary standard solution of anhydrous sodium carbonate. The portions of sodium carbonate solution were measured into a conical flask using a 25 cm3 pipette. The hydrochloric acid solution was added from a burette. The mean titre was 20.8 cm3.

The balanced equation for the titration reaction was:

\[
2\text{HCl} + \text{Na}_2\text{CO}_3 \rightarrow 2\text{NaCl} + \text{H}_2\text{O} + \text{CO}_2
\]

\(\text{(e) Calculate, correct to two decimal places, the concentration of the hydrochloric acid solution in}
\)

\(\text{\(i\)}\) moles per litre,

\(\text{\(ii\)}\) grams per litre. \(\text{(12)}\)

\(\text{(i) We have 0.05 mol/L Na}_2\text{CO}_3\)

\[
\frac{0.05 \times 25}{1000} = 0.00125 \text{ mol/25 cm}^3 \text{ Na}_2\text{CO}_3
\]

\[
\begin{array}{ccc}
\text{HCl} & : & \text{Na}_2\text{CO}_3 \\
2 & : & 1 \\
0.0025 & : & 0.00125
\end{array}
\]

\[
\frac{0.0025 \text{ mol/20.8 cm}^3 \text{ HCl}}{0.0025 \times 1000} = 0.12 \text{ mol/L HCl}
\]

\(\text{(ii) M}_r \text{ of HCl} = (1) + (35.5) = 36.5\)

\[
0.12 \times 36.5 = 4.38 \text{ g/L HCl} \quad [\text{mol to g } \rightarrow \text{xM}_r]
\]

2. **To determine the concentration of ethanoic acid in vinegar**

Acid: CH$_3$COOH – weak acid \hspace{1cm} **Base:** NaOH – strong base

Indicator: Phenolphthalein (WASBPH)

Colour change: Pink to Colourless [NOT “clear”!]

Equation: CH$_3$COOH + NaOH \rightarrow CH$_3$COONa + H$_2$O

Ratio: 1 CH$_3$COOH : 1 NaOH

Notes: Vinegar must be diluted beforehand because it is too concentrated. Make sure to multiply the concentration of the *dilute* vinegar by the dilution factor to find the concentration of the *original* vinegar.

\[
\text{Dilution factor} = \frac{\text{Volume of Diluted Vinegar}}{\text{Volume of Original Vinegar}}
\]

Clear vinegar should be used to ensure the endpoint is clearly seen.
Sample calculation: (2016 HL Q1)

To determine the concentration of ethanoic acid in a sample of vinegar, 25.0 cm3 of the vinegar were diluted to 250 cm3 and then the diluted vinegar was titrated with a previously standardised solution which contained 1.20 g of sodium hydroxide in 500 cm3 of solution. On average, 18.75 cm3 of the diluted vinegar were required to neutralise 25.0 cm3 of this sodium hydroxide solution.

The equation for the titration reaction is:

\[
\text{CH}_3\text{COOH} + \text{NaOH} \rightarrow \text{CH}_3\text{COONa} + \text{H}_2\text{O}
\]

(c) Calculate

(i) the number of moles of sodium hydroxide in each 25.0 cm3 portion,

(ii) the number of moles of ethanoic acid per cm3 of diluted vinegar. (12)

(d) Find the concentration of ethanoic acid in the original vinegar

(i) in terms of moles per litre,

(ii) as a percentage (w/v). (9)

(c)

(i) We have 1.20 g/500 cm3 NaOH

\[
M_r \text{ of NaOH} = (23) + (16) + (1) = 40
\]

\[
1.20 \div 40 \quad \text{[g to mol } \div M_r\text{]}
\]

\[
= 0.03 \text{ mol/500 cm}^3 \text{NaOH}
\]

\[
0.03 \times 25
\]

\[
=0.0015 \text{ mol/25 cm}^3 \text{NaOH}
\]

(ii) \[
\begin{align*}
\text{CH}_3\text{COOH} & : \quad \text{NaOH} \\
1 & : \quad 1 \\
0.0015 & : \quad 0.0015
\end{align*}
\]

\[
0.0015 \text{ mol/18.75 cm}^3 \text{CH}_3\text{COOH (dilute)}
\]

\[
0.0015 \times 1
\]

\[
=0.00008 \text{ mol/1 cm}^3 \text{CH}_3\text{COOH (dilute)}
\]

(d)

(i) \[
0.00008 \text{ mol/1 cm}^3 \text{CH}_3\text{COOH (dilute)}
\]

\[
\text{Dilution Factor} = \frac{250}{25} = 10
\]

\[
\times 10
\]

\[
=0.0008 \text{ mol/1 cm}^3 \text{CH}_3\text{COOH (original)}
\]

\[
\times 1000
\]

\[
= 0.8 \text{ mol/L CH}_3\text{COOH (original)}
\]
(ii) \(\% (w/v) \) means g/100 cm\(^3\)

We have 0.8 mol/L CH\(_3\)COOH (original) \(\times 60 \) [mol to g \(\rightarrow \times M_1 \)]

\[\text{= 48 g/L CH}_3\text{COOH (original)} \]

\[\text{÷10} \]

\[\text{= 4.8 g/100 cm}^3 \text{ CH}_3\text{COOH (original)} \]

\[\text{= 4.8 % (w/v)} \]

3. To determine the amount of water of crystallisation in washing soda (hydrated sodium carbonate)

Acid: HCl – strong acid

Base: Na\(_2\)CO\(_3\) – weak base

Indicator: Methyl Orange (SAWBMO)

Colour change: Yellow to Red

Equation:

\[2\text{HCl} + \text{Na}_2\text{CO}_3 \rightarrow \text{NaCl} + \text{H}_2\text{O} + \text{CO}_2 \]

Ratio: 2 HCl : 1 Na\(_2\)CO\(_3\)

Notes: Same as titration number 1, just with extra calculations.

The crystals are made up of Na\(_2\)CO\(_3\middot\)xH\(_2\)O. We need to find 2 things:

1. the percentage of water of crystallisation, and
2. the value of \(x \).

These calculations can also come up for other compounds – not just in in this experiment, e.g. finding the percentage water of crystallisation and value for \(x \) in hydrated copper (II) sulphate, CuSO\(_4\middot\)xH\(_2\)O.

Sample Calculation:

An experiment was carried out to determine the percentage water of crystallisation and the degree of water of crystallisation, \(x \), in a sample of hydrated sodium carbonate crystals (Na\(_2\)CO\(_3\middot\)xH\(_2\)O). An 8.20 g sample of the crystals was weighed accurately on a clock glass and then made up to 500 cm\(^3\) of solution in a volumetric flask. A pipette was used to transfer 25.0 cm\(^3\) portions of this solution to a conical flask. A previously standardised 0.11 M hydrochloric acid (HCl) solution was used to titrate each sample. A number of accurate titrations were carried out. The average volume of hydrochloric acid solution required in these titrations was 26.05 cm\(^3\).

The titration reaction is described by the equation:

\[\text{Na}_2\text{CO}_3 + 2\text{HCl} \rightarrow 2\text{NaCl} + \text{CO}_2 + \text{H}_2\text{O} \]

\(d \) From the titration figures, calculate the concentration of sodium carbonate (Na\(_2\)CO\(_3\)) in the solution in

(i) moles per litre,

(ii) grams per litre. \(\text{(9)} \)

\(e \) Calculate the percentage water of crystallisation present in the crystals and the value of \(x \), the degree of hydration of the crystals. \(\text{(12)} \)

G. Galvin
(d)

(i) We have 0.11 mol/L HCl

\[
\begin{array}{c}
0.11 \times 26.05 \\
\hline
1000 \\
\end{array}
\]

=0.0028655 mol/26.05 cm\(^3\) HCl

<table>
<thead>
<tr>
<th>HCl</th>
<th>Na(_2)CO(_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

0.0028655 : 0.00143275

(ii) \(M_r\) of Na\(_2\)CO\(_3\) = 2(23) + (12) + 3(16) = 106

\[\times 106 \quad [\text{mol to g } \rightarrow \times M_r]\]

=6.07486 g/L Na\(_2\)CO\(_3\)

(e)

(i) \[\text{Percentage water of crystallisation} = \frac{\text{Mass of water in your sample}}{\text{Mass of your sample}} \times 100\]

We had 6.07486 g/L Na\(_2\)CO\(_3\) but we only made 500 cm\(^3\) of the solution.

\[= 3.03743 \text{ g/500 cm}^3 \text{ Na}_2\text{CO}_3 \text{ in our solution.}\]

But we weighed out 8.20g of crystals.

The extra mass is the mass of water.

\[8.20 - 3.03743 = 5.16257\text{g of water in our crystals}\]

\[\% \text{ water of crystallisation} = \frac{5.16257}{8.20} \times 100\]

(ii) \[\frac{\text{Mass of Na}_2\text{CO}_3}{\text{Mr of Na}_2\text{CO}_3} = \frac{\text{Mass of } x\text{H}_2\text{O}}{\text{Mr of } x\text{H}_2\text{O}}\]

\(M_r\) of \(x\text{H}_2\text{O}\) = \(x[2(1) + (16)] = 18x\)

\[\frac{3.03743}{106} = \frac{5.16257}{18x}\]

\[x = \frac{5.16257 \times 106}{18 \times 3.03743}\]

\[x = 10 \quad [\text{round to a whole number if possible}]\]

This means our crystals are actually made up of Na\(_2\)CO\(_3\).10H\(_2\)O