
Name:

Chemical Bonding	Objectives
6. Chemical Equations:	-balance simple chemical equations
Tests for Anions	-test for anions in aqueous solutions: chloride, carbonate, nitrate, sulfate.

Chemical Equations:

Balancing Chemical Equations:

*Def*ⁿ: The **Law of Conservation of Mass** states that the total mass of the products of a chemical reaction is the same as the total mass of the reactants.

This tells us that *all* of the atoms that go into a reaction *must* come back out at the end. Atoms don't just appear and dissappear. Another way to say this is:

*Def*ⁿ: The **Law of Conservation of Matter** states that in any chemical reaction, matter is neither created nor destroyed but merely changes from one form to another.

As every atom going into a reaction must be accounted for in the products that are formed, we need our chemical equations to be *balanced*, i.e. the number of atoms of each element on the left of the equation must equal the number of atoms of each element on the right hand side.

Note: We can never change the formula for any compound in the equation, we can only change the coefficient (big number on front).

Example:

Balance the chemical equation

$$Al + Fe_2O_3 \rightarrow Al_2O_3 + Fe$$

To balance the equation, we draw a table, listing how many atoms of each element are on each side of the equation:

Left Hand Side	Right Hand Side	
1 Al atom	2 Al atoms	
2 Fe atoms	1 Fe atom	
3 O atoms	3 O atoms	

We have 1 Al atom on the left and 2 Al atoms on the right. We make them equal by adding a coefficient of 2 before Al on the left of the equation:

$$2A1 + Fe_2O_3 \rightarrow Al_2O_3 + Fe$$

Our table now looks like:

Left Hand Side	Right Hand Side	
2 Al atoms	2 Al atoms	
2 Fe atoms	1 Fe atom	
3 O atoms	3 O atoms	

We have 2 Fe atoms on the left and 1 Fe atom on the right. We make them equal by adding a coefficient of 2 before Fe on the right of our equation:

$$2Al + Fe_2O_3 \rightarrow Al_2O_3 + 2Fe$$

Our table now looks like:

Left Hand Side	Right Hand Side	
2 Al atoms	2 Al atoms	
2 Fe atoms	2 Fe atoms	
3 O atoms	3 O atoms	

Both sides of our table are now equal, so our equation is balanced.

Our balanced equation is:

$$2A1 + Fe_2O_3 \rightarrow Al_2O_3 + 2Fe$$

These tests are used to find the anion (negative ion) in a sample of an ionic compound. The table below summarises the experiment and needs to be known by heart.

Anion	Test	Observation	Reason
Chloride	1. Add AgNO ₃ solution to	1. White precipitate forms	$Ag^+ + Cl^- \rightarrow AgCl\downarrow$
	a solution of the sample.		
	2. Add ammonia (NH ₃)	2. Precipitate dissolves	
Sulphate	1. Add BaCl ₂ solution to a	1. White precipitate forms	$Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4 \downarrow$
	solution of the sample.		
Carbonate	1. Add dilute HCl to the	1. Fizzing/Effervescence.	$CO_3^{2-} + 2H^+ \rightarrow CO_2 + H_2O$
	solid sample.		$HCO_3^- + H^+ \rightarrow CO_2 + H_2O$
		A gas is given off that	$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 \downarrow + H_2O$
		turns limewater milky.	
Nitrate	Brown Ring Test:	A brown ring is formed at	Brown ring is due to the nitrate ion
	1. Add FeSO4 to a solution	the junction of the two	being present.
	of the sample.	liquids ⇒ nitrate anion is	
	2. Add concentrated	present	
	sulphuric acid.		