N	am	•••
Τđ	an	ιι.

Chemical Bonding	Objectives
6. Chemical Equations:	-balance simple chemical equations
Tests for Anions	-test for anions in aqueous solutions: chloride, carbonate, nitrate, sulfate, phosphate,
	sulfite, hydrogencarbonate

Chemical Equations:

Balancing Chemical Equations:

Def^{*n*}: The **Law of Conservation of Mass** states that the total mass of the products of a chemical reaction is the same as the total mass of the reactants.

This tells us that *all* of the atoms that go into a reaction *must* come back out at the end. Atoms don't just appear and dissappear. Another way to say this is:

Def^{*n*}: The **Law of Conservation of Matter** states that in any chemical reaction, matter is neither created nor destroyed but merely changes from one form to another.

As every atom going into a reaction must be accounted for in the products that are formed, we need our chemical equations to be *balanced*, i.e. the number of atoms of each element on the left of the equation must equal the number of atoms of each element on the right hand side.

Note: We can never change the formula for any compound in the equation, we can only change the coefficient (big number on front).

Example:

Balance the chemical equation

 $Al + Fe_2O_3 \rightarrow Al_2O_3 + Fe$

To balance the equation, we draw a table, listing how many atoms of each element are on each side of the equation:

Left Hand Side	Right Hand Side
1 Al atom	2 Al atoms
2 Fe atoms	1 Fe atom
3 O atoms	3 O atoms

We have 1 Al atom on the left and 2 Al atoms on the right. We make them equal by adding a coefficient of 2 before Al on the left of the equation:

 $2Al + Fe_2O_3 \rightarrow Al_2O_3 + Fe$

Our table now looks like:

Left Hand Side	Right Hand Side	
2 Al atoms	2 Al atoms	
2 Fe atoms	1 Fe atom	
3 O atoms	3 O atoms	

We have 2 Fe atoms on the left and 1 Fe atom on the right. We make them equal by adding a coefficient of 2 before Fe on the right of our equation:

 $2Al + Fe_2O_3 \rightarrow Al_2O_3 + 2Fe$

Our table now looks like:

Left Hand Side	Right Hand Side
2 Al atoms	2 Al atoms
2 Fe atoms	2 Fe atoms
3 O atoms	3 O atoms

Both sides of our table are now equal, so our equation is balanced.

Our balanced equation is:

 $2Al + Fe_2O_3 \rightarrow Al_2O_3 + 2Fe$

Tests For Anions:

These tests are used to find the anion (negative ion) in a sample of an ionic compound. The table below summarises the experiment and needs to be known by heart.

Anion	Test	Observation	Reason
Chloride	1. Add AgNO ₃ solution to	1. White precipitate forms	$Ag^+ + Cl^- \rightarrow AgCl\downarrow$
	a solution of the sample.		
	2. Add ammonia (NH ₃)	2. Precipitate dissolves	2
Sulphate	1. Add $BaCl_2$ solution to a	1. White precipitate forms	$\operatorname{Ba}^{2^+} + \operatorname{SO}_4^{2^-} \to \operatorname{Ba}^{3^-} \operatorname{SO}_4 \downarrow$
	solution of the sample.		$Ba^{2} + SO_3^{2} \rightarrow BaSO_3\downarrow$
Or			
Sulphite	2. To distinguish: Add	2. If precipitate remains	
	dilute HCl.	⇒ sulphate	
		If precipitate dissolves	
<u> </u>		⇒ sulphite.	
Carbonate	1. Add dilute HCl to the	1. Fizzing/Effervescence.	$CO_3^{2^*} + 2H \rightarrow CO_2 + H_2O$
	solid sample.		$HCO_3 + H^2 \rightarrow CO_2 + H_2O$
Or		A gas is given off that	$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 \downarrow + H_2O$
		turns limewater milky.	
Undro con corbonato	2 To distinguish Add	2 White presinitate forms	
Hydrogencarbonate	2. To distinguish. Add	2. white precipitate forms	$Ma^{2+} + CO^{2-} + MaCO +$
	solution of the sample	⇒ carbonate	$\operatorname{Mg}^{+}\operatorname{CO}_{3}^{-} \rightarrow \operatorname{MgCO}_{3\downarrow}^{-}$
	solution of the sample.	No precipitate forms	$M\alpha^{2+} + 2HCO^{-} \rightarrow M\alpha(HCO)$
Nitrata	Dresson Ding Tests	⇒ nyurogencarbonate	$Mg + 2HCO_3 \rightarrow Mg(HCO_3)_2$
Nitrate	Brown King Test:	A brown ring is formed at	Brown ring is due to the nitrate ion
	1. Add FeSO4 to a solution	the junction of the two liquids \rightarrow nitrate onion is	being present.
	2 Add concentrated	nquids ⇒ intrate anion is	
	2. Add concentrated	present	
Phosphate	1 Add Ammonium	Vellow precipitate is	Vellow precipitate is due to the
Thosphate	Molybdate to a solution	formed \Rightarrow phosphate anion	phosphate ion being present
	of the sample	is present	phosphate foil being present.
	2 Add concentrated nitric		
	acid		
	3. Warm the solution.		