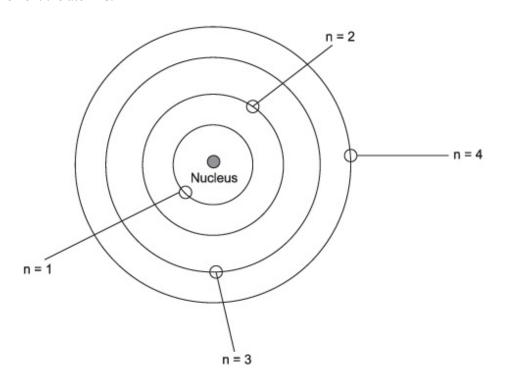
Name:

Periodic Table and	Objectives
Atomic Structure	
3. Arrangement of	-define and explain energy levels in atoms
Electrons in the Atom	-use flame tests to provide evidence that energy is absorbed or released in
	-discrete units when electrons move from one energy level to another
	-relate energy levels in atoms to everyday applications such as sodium street lights and
	fireworks

Metal salts can be used in fireworks to give different colours. For example:

Flame Tests


Method:

- 1. Dip damp wooden splint into sample of salt.
- 2. Place sample into blue Bunsen flame.
- 3. Record the colour of the flame.

Metal Present	Colour
Lithium	Crimson
Potassium	Lilac
Barium	Green
Strontium	Strontium
Copper	Blue-Green
Sodium (street lights)	Yellow

Def^{*}: An **energy level** (or **shell**) is defined as the fixed energy value that an electron in an atom may have. The first energy level is called n=1, the second is called n=2, etc.

- 1. When atoms are hit with light, the electrons can absorb energy from the light and jump to higher energy levels.
- 2. The atom is now in its **excited state**.
- 3. The electrons then fall back to their original positions, this is called the **ground state**.
- 4. When electrons fall back to the ground state they give off light of a particular colour, depending on what element the atom is.

