Name:

Periodic Table and	Objectives
Atomic Structure	
2. Atomic Structure	-Outline the historical development of atomic theory (outline principles only,
	mathematical treatment not required):
	-Dalton: atomic theory;
	-Crookes: vacuum tubes, cathode rays;
	-Stoney: naming of the electron;
	-Thomson: negative charge of the electron; e/m for electrons
	(experimental details not required);
	-Millikan: magnitude of charge of electrons as shown by oil drop
	experiment (experimental details not required);
	-Rutherford: discovery of the nucleus as shown by the particle scattering experiment;
	discovery of protons in nuclei of various atoms;
	-Bohr: model of the atom;
	-Chadwick: discovery of the neutron.
	-recall that matter is composed of particles, which may be atoms,
	molecules or ions
	-define an atom
	-appreciate that atoms are minute particles
	-state the law of conservation of mass
	-describe, relative mass, relative charge and location of a proton, neutron, and electron in
	an atom

All materials are made up of tiny building blocks called **atoms**. The process of diffusion is proof that all materials are made up of these atoms.

History of the Atom and its Structure:

1. The Greeks:

All matter is made up of small, indivisible particles

- 2. John Dalton:
 - Dalton's Atomic Theory:
 - 1. All matter is made up of minute particles called atoms.
 - 2. All atoms are indivisible, i.e. they cannot be broken down into any simpler particles.

3. William Crookes:

Carried out a number of experiments using vacuum tubes.

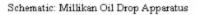
- 1. Maltese cross tube: The shadow of the Maltese Cross on the opposite side of the tube to the cathode showed that radiation was coming from the cathode **Cathode Rays**.
- 2. Paddle Wheel Tube: The cathode rays had enough energy to turn the paddle wheel.

4. J.J. Thomson:

Carried out an experiment with a cathode ray tube containing a pair of oppositely charged, parallel plates.

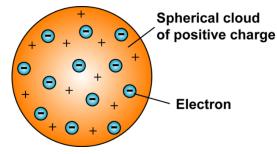
The cathode rays were attracted towards the positive plate, so the particles must be negatively charged. He called them **electrons** (a name suggested by **George Stoney).** He could

cancel out the attractive forces using a magnetic field.


Doing this enabled him to **calculate e/m**, the ratio of an electron's charge to its mass. *Note: He could calculate only e/m, not e or m separately.*


+

5. Robert Millikan:


Carried out the famous oil drop experiment.

Oil was sprayed in a fine mist. X-rays were used to knock electrons out of the air. The oil droplets picked up these electrons - becoming negatively charged. The charge on two plates were changed until the droplets floated in mid-air; the force of the charge was equal to the force of gravity. This allowed him to **calculate e**, the charge of the electron – and thus also **calculate m**, the mass of the electron.

6. J.J. Thomson's Plum Pudding Model:

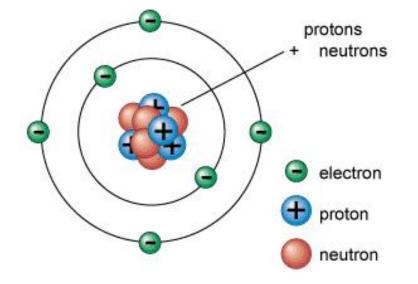
This model of the atom was proven to be wrong with Rutherford's Discovery of the nucleus.

7. Ernest Rutherford:

Discovered the nucleus by bombarding gold foil with alpha particles (+ve charged) and looking at what happened to the alpha particles:

Result	Conclusion	
Most passed straight through	Matter is mostly empty space	
Some were deflected at large angles	+ve alpha particles repelled when passing near the	
	small positive nucleus	
Very small number reflected back along original path	+ve alpha particles collided head on with the nucleus	

Discovered protons by bombarding elements lighter than gold with alpha particles. These would break up, releasing small +ve charged particles: **protons**.


8. James Chadwick:

Discovered the neutron by bombarding beryllium nuclei with alpha particles. Small, neutral particles were released – **neutrons**.

Def^{*}: **Cathode rays** are streams of electrons. They are negatively charged and have enough energy to move a paddle wheel. They move in straight lines from the cathode to the anode and can be deflected my electric and magnetic fields.

Properties of Subatomic Particles:

	Relative Charge	Relative Mass	Location
Proton	+1	1	Nucleus
Neutron	0	1	Nucleus
Electron	-1	1/1830 (nearly 0)	Outside Nucleus

Model of the Atom after the Discovery of the Nucleus (Bohr Model):