ът		
N	ame:	

pH and Indicators	Objectives
18. pH and Indicators	-define pH
_	-describe the use of the pH scale as a measure of the degree of acidity/alkalinity
	-discuss the limitations of the pH scale
	-explain self-ionisation of water
	-write an expression for Kw
	-use universal indicator paper or solution to determine pH
	-calculate the pH of dilute aqueous solutions of strong acids and bases
	-distinguish between the terms weak, strong, concentrated and dilute in relation to
	acids and bases
	-calculate the pH of weak acids and bases (approximate method of
	-calculation to be used – assuming that ionisation does not alter the total
	concentration of the non-ionised form)
	-define acid-base indicator
	-explain the theory of acid-base indicators
	-justify the selection of an indicator for acid base titrations

Water only conducts electricity when it contains ions dissolved in it. However, even pure water conducts a very small current, so there must be some ions present. The ions exist because water *self-ionises*:

$$H_2O \rightleftharpoons H^+ + OH^-$$

The equilibrium above lies far to the right i.e. only a very small number of H₂O molecules self-ionise.

As the number of H₂O molecules that self-ionise is so small, we can say that the concentration of H₂O stays constant.

Look at the K_c expression for the self-ionisation of water:

$$K_c = \frac{[H^+][OH^-]}{[H_2O]}$$

K_c is a constant. We also assumed that [H₂O] is a constant, so we can bring the [H₂O] up and multiply on the left side.

$$K_c[H_2O] = [H^+][OH^-]$$

K_c (a constant) times [H₂O] (a constant), gives a constant. We call this constant K_w, the *ionic product of water*.

Def^{*n*}: The **ionic product of water** is
$$K_w = [H^+][OH^-]$$

For water at 25°C it has been found that K_w is $1x10^{-14}$. This means

$$K_w = [H^+][OH^-] = 1 \times 10^{-14}$$

To find $[H^+]$, we need to use the fact that $[H^+]=[OH^-]$ (from the 1:1 ratio in the self-ionisation equation).

$$K_w = [H^+][H^+] = 1 \times 10^{-14}$$
$$K_w = [H^+]^2 = 1 \times 10^{-14}$$
$$[H^+] = \sqrt{1 \times 10^{-14}}$$
$$[H^+] = 1 \times 10^{-7}$$

See how this could be asked in HL 2016 Q10 a (iii)

Find the pH of a 0.11 mol/L solution of HCl

Find the pH of a 0.5 mol/L solution of H_2SO_4

Find the $\mathrm{H}^{\scriptscriptstyle +}$ concentration of a HCl solution whose pH is 1.9

For strong bases:

$$pOH = -log_{10}[OH^-]$$

and

pH = 14 - pOH

Find the pH of a solution whose OH^- concentration is 4.6 x 10^{-9} mol/L

Find the pOH of a 0.35 mol/L solution of NaOH

Find the pH of a 0.75 mol/L solution of $Ca(OH)_2$

Find the OH⁻ concentration of an KOH solution whose pH is 13.2

For weak acids:

 $pH = -log_{10}\sqrt{M_{acid} \times K_a}$ where M_{acid} is the molarity of the acid and K_a is the dissociation constant of the acid (given in question).

Find the pH of a 0.1M solution of methanoic acid given that K_a is 2.1 x 10^{-4}

Find the pH of an aqueous solution containing 1.48 g of propanoic acid (CH₃CH₂COOH) in 200 cm³ in solution, given that the dissociation constant K_a for propanoic acid is 1.36 x 10⁻⁵.

Find the molarity of a CH₃COOH solution whose pH is 1.9, given the K_a value for CH₃COOH is 1.78 x 10⁻⁵.

For weak bases:

 $pOH = -log_{10}\sqrt{M_{base} \times K_b}$ where M_{base} is the molarity of the base and K_b is the dissociation constant of the base (given in question). Also remember that pH = 14 - pOH

Find the pH of a 0.15M solution of ammonia (NH₃) given that $K_{\rm b}$ is 1.8 x $10^{\text{-5}}$

Find the pH of an aqueous solution containing 1.5 g of the basic compound $C_2H_5NH_2$ in 250 cm³ in solution, given that the dissociation constant K_b for this base is 4.4 x 10⁻⁴.

Find the molarity of a NH₃ solution whose pH is 12, given the K_b value for CH₃COOH is 1.8 x 10⁻⁵.

Limitations of the pH scale:

- 1. Only has a range of 0-14.
- 2. Does not work for concentrated solutions.
- 3. Only works for aqueous solutions.

Acid/Base Indicators:

Indicators are weak acids/bases that change colour depending on where the equilibrium lies between the undissociated and dissociated forms.

1) Indicator as a weak acid:

 $\begin{array}{ccc} \text{HIn} &\rightleftharpoons & \text{H}^+ + \text{In}^-\\ \text{Colour 1} & & \text{Colour 2} \end{array}$

By Le Chatelier's Principle,

- 1. Adding H^+ (acid) will favour the reverse reaction, so Colour 1 will be seen.
- 2. Adding OH⁻ (base) will react with the H⁺ to form water. As this removes H⁺ from the system, the forward reaction will be favoured, so Colour 2 will be seen.
- 2) Indicator as a weak base:

$$\begin{array}{rcl} \text{XOH} & \rightleftharpoons & X^+ + & \text{OH}^-\\ \text{Colour 1} & & \text{Colour 2} \end{array}$$

By Le Chatelier's Principle,

- 1. Adding OH⁻ (base) will favour the reverse reaction, so Colour 1 will be seen.
- 2. Adding H⁺ (acid) will react with the OH⁻ to form water. As this removes OH⁻ from the system, the forward reaction will be favoured, so colour 2 will be seen.

Indicators are chosen based on the pH range in which the colour changes. The indicators and pH ranges we need to know are:

Name of indicator	Approx. pH range	Acid Colour	Base Colour
Methyl Orange	3-5	Red	Yellow
Litmus	5-8	Red	Blue
Phenolphthalein	8-10	Colourless	Pink

Titration Curves:

Notes:

- 1. pH begins near 0.
- 2. pH finishes near 14.
- 3. Long vertical section where solution quickly changes from acidic to basic.
- 4. Midpoint of this vertical section is the "equivalence point".
- Indicator chosen must completely change colour within the vertical section in order to be suitable (methyl orange & phenolphthalein both suitable here)

Weak Acid vs. Strong Base

Notes:

- 1. pH begins near 0.
- 2. pH finishes much lower than 14.
- 3. Shorter vertical section where solution quickly changes from acidic to basic.
- 4. Midpoint of this vertical section is the "equivalence point".
- 5. Indicator chosen must completely change colour within the vertical section in order to be suitable (methyl orange only suitable here)

Notes:

- 1. pH begins much higher than 0.
- 2. pH finishes near 14.
- 3. Shorter vertical section where solution quickly changes from acidic to basic.
- 4. Midpoint of this vertical section is the "equivalence point".
- Indicator chosen must completely change colour within the vertical section in order to be suitable (phenolpthalein only suitable here)

Notes:

- 1. pH begins much higher than 0.
- 2. pH finishes much lower than 14.
- No vertical section where solution quickly changes from acidic to basic.
- 4. No obvious "equivalence point".
- 5. Indicator chosen must completely change colour within the vertical section in order to be suitable (no indicator suitable here)