Name:

$\mathbf{p H}$ and Indicators	Objectives
18. pH and Indicators	-define pH - -dscribe the use of the pH scale as a measure of the degree of acidity/alkalinity -discuss the limitations of the pH scale -explain self-ionisation of water -write an expression for Kw -use universal indicator paper or solution to determine pH -calculate the pH of dilute aqueous solutions of strong acids and bases -distinguish between the terms weak, strong, concentrated and dilute in relation to acids and bases -calculate the pH of weak acids and bases (approximate method of -calculation to be used - assuming that ionisation does not alter the total concentration of the non-ionised form) -define acid-base indicator -explain the theory of acid-base indicators -justify the selection of an indicator for acid base titrations

Water only conducts electricity when it contains ions dissolved in it. However, even pure water conducts a very small current, so there must be some ions present. The ions exist because water self-ionises:

$$
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

The equilibrium above lies far to the right i.e. only a very small number of $\mathrm{H}_{2} \mathrm{O}$ molecules self-ionise.
As the number of $\mathrm{H}_{2} \mathrm{O}$ molecules that self-ionise is so small, we can say that the concentration of $\mathrm{H}_{2} \mathrm{O}$ stays constant.
Look at the K_{c} expression for the self-ionisation of water:

$$
K_{c}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

K_{c} is a constant. We also assumed that $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is a constant, so we can bring the $\left[\mathrm{H}_{2} \mathrm{O}\right]$ up and multiply on the left side.

$$
K_{c}\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

K_{c} (a constant) times $\left[\mathrm{H}_{2} \mathrm{O}\right]$ (a constant), gives a constant. We call this constant K_{w}, the ionic product of water.

$$
D e f^{n}: \text { The ionic product of water is } \quad K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

For water at $25^{\circ} \mathrm{C}$ it has been found that K_{w} is 1×10^{-14}. This means

$$
K_{w}=\left[H^{+}\right]\left[O H^{-}\right]=1 \times 10^{-14}
$$

To find $\left[\mathrm{H}^{+}\right]$, we need to use the fact that $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$(from the $1: 1$ ratio in the self-ionisation equation).

$$
\begin{gathered}
K_{w}=\left[H^{+}\right]\left[H^{+}\right]=1 \times 10^{-14} \\
K_{w}=\left[H^{+}\right]^{2}=1 \times 10^{-14} \\
{\left[H^{+}\right]=\sqrt{1 \times 10^{-14}}} \\
{\left[H^{+}\right]=1 \times 10^{-7}}
\end{gathered}
$$

See how this could be asked in HL 2016 Q10 a (iii)

Calculating pH :

$D e^{n}: \quad$ pH $=-\log _{10}\left[\boldsymbol{H}^{+}\right]$

For strong acids:

$p H=-\log _{10}\left[H^{+}\right]$
Find the pH of a solution whose H^{+}concentration is $7.4 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$

H^{+}Concentration		pH	Example
BASIC	10^{-14}	14	
NEUTRAL	10^{-13}	13	Sodium Hydroxide Household Bleach
	10^{-12}	12	
	10^{-11}	11	Ammonia Solution Soap
	10^{-10}	10	Detergent
	10^{-9}	9	Milk of Magnesia
	10^{-8}	8	Eggs Blood
	10^{-7}	7	Pure Water Milk
	10^{-6}	6	
	10^{-5}	5	Coffee Tomato Juice
	10^{-4}	4	
	10^{-3}	3	Orange Juice Soda Pop
			Vinegar
	10^{-2}	2	Lemon Juice
	10^{-1}	1	Hydrochloric Acid
ACIDIC	10°	0	

Find the pH of a $0.11 \mathrm{~mol} / \mathrm{L}$ solution of HCl

Find the pH of a $0.5 \mathrm{~mol} / \mathrm{L}$ solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$

Find the H^{+}concentration of a HCl solution whose pH is 1.9

For strong bases:

$$
\begin{gathered}
p O H=-\log _{10}\left[O H^{-}\right] \\
p H=14-p O H
\end{gathered}
$$

and

Find the pH of a solution whose OH^{-}concentration is $4.6 \times 10^{-9} \mathrm{~mol} / \mathrm{L}$

Find the pOH of a $0.35 \mathrm{~mol} / \mathrm{L}$ solution of NaOH

Find the pH of a $0.75 \mathrm{~mol} / \mathrm{L}$ solution of $\mathrm{Ca}(\mathrm{OH})_{2}$

Find the OH^{-}concentration of an KOH solution whose pH is 13.2

For weak acids:

$\boldsymbol{p H}=-\boldsymbol{l o g}_{\mathbf{1 0}} \sqrt{\boldsymbol{M}_{\boldsymbol{a c i d}} \times \boldsymbol{K}_{\boldsymbol{a}}}$ where $\mathrm{M}_{\text {acid }}$ is the molarity of the acid and K_{a} is the dissociation constant of the acid (given in question).

Find the pH of a 0.1 M solution of methanoic acid given that K_{a} is 2.1×10^{-4}

Find the pH of an aqueous solution containing 1.48 g of propanoic acid $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right)$ in $200 \mathrm{~cm}^{3}$ in solution, given that the dissociation constant K_{a} for propanoic acid is 1.36×10^{-5}.

Find the molarity of a $\mathrm{CH}_{3} \mathrm{COOH}$ solution whose pH is 1.9 , given the K_{a} value for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.78×10^{-5}.

For weak bases:

$\boldsymbol{p O H}=-\boldsymbol{l o g}_{\mathbf{1 0}} \sqrt{\boldsymbol{M}_{\text {base }} \times \boldsymbol{K}_{\boldsymbol{b}}}$ where $\mathrm{M}_{\text {base }}$ is the molarity of the base and K_{b} is the dissociation constant of the base (given in question). Also remember that $\mathrm{pH}=14-\mathrm{pOH}$

Find the pH of a 0.15 M solution of ammonia $\left(\mathrm{NH}_{3}\right)$ given that K_{b} is 1.8×10^{-5}

Find the pH of an aqueous solution containing 1.5 g of the basic compound $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ in $250 \mathrm{~cm}^{3}$ in solution, given that the dissociation constant K_{b} for this base is 4.4×10^{-4}.

Find the molarity of a NH_{3} solution whose pH is 12 , given the K_{b} value for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5}.

Limitations of the $\mathbf{p H}$ scale:

1. Only has a range of 0-14.
2. Does not work for concentrated solutions.
3. Only works for aqueous solutions.

Acid/Base Indicators:

Indicators are weak acids/bases that change colour depending on where the equilibrium lies between the undissociated and dissociated forms.

1) Indicator as a weak acid:

$$
\underset{\text { Colour } 1}{\mathrm{HIn}} \quad \rightleftharpoons \quad \mathrm{H}^{+}+\underset{\text { Colour } 2}{\mathrm{In}^{-}}
$$

By Le Chatelier's Principle,

1. Adding H^{+}(acid) will favour the reverse reaction, so Colour 1 will be seen.
2. Adding OH^{-}(base) will react with the H^{+}to form water. As this removes H^{+}from the system, the forward reaction will be favoured, so Colour 2 will be seen.
2) Indicator as a weak base:

$$
\underset{\substack{\text { Colour } 1}}{\mathrm{XOH}} \rightleftharpoons \underset{\substack{\text { Colour 2 }}}{\mathrm{X}^{+}+\mathrm{OH}^{-}}
$$

By Le Chatelier's Principle,

1. Adding OH^{-}(base) will favour the reverse reaction, so Colour 1 will be seen.
2. Adding H^{+}(acid) will react with the OH^{-}to form water. As this removes OH^{-}from the system, the forward reaction will be favoured, so colour 2 will be seen.

Indicators are chosen based on the pH range in which the colour changes. The indicators and pH ranges we need to know are:

Name of indicator	Approx. pH range	Acid Colour	Base Colour
Methyl Orange	$3-5$	Red	Yellow
Litmus	$5-8$	Red	Blue
Phenolphthalein	$8-10$	Colourless	Pink

Titration Curves:

volume of alkali added (cm^{3})

Notes:

1. pH begins near 0 .
2. pH finishes near 14 .
3. Long vertical section where solution quickly changes from acidic to basic.
4. Midpoint of this vertical section is the "equivalence point".
5. Indicator chosen must completely change colour within the vertical section in order to be suitable (methyl orange \& phenolphthalein both suitable here)

Strong Acid vs. Weak Base
pH

Notes:

1. pH begins near 0 .
2. pH finishes much lower than 14.
3. Shorter vertical section where solution quickly changes from acidic to basic.
4. Midpoint of this vertical section is the "equivalence point"
5. Indicator chosen must completely change colour within the vertical section in order to be suitable (methyl orange only suitable here)

Weak Acid vs. Strong Base

Notes:

1. pH begins much higher than 0 .
2. pH finishes near 14.
3. Shorter vertical section where solution quickly changes from acidic to basic.
4. Midpoint of this vertical section is the "equivalence point".
5. Indicator chosen must completely change colour within the vertical section in order to be suitable (phenolpthalein only suitable here)

Notes:

1. pH begins much higher than 0 .
2. pH finishes much lower than 14.
3. No vertical section where solution quickly changes from acidic to basic.
4. No obvious "equivalence point".
5. Indicator chosen must completely change colour within the vertical section in order to be suitable (no indicator suitable here)
