Name:

Atomic Structure	Objectives
5. Oxidation and	-define oxidation and reduction in terms of electron transfer
Reduction	-use simple examples, e.g. Na with Cl ₂ , Mg with O ₂ , Zn with Cu ²⁺ to describe oxidation
	and reduction in terms of electron transfer
	-apply knowledge of oxidation and reduction to explain the rusting of iron
	-define oxidising agent and reducing agent
	-carry out an experiment to show that halogens act as oxidising agents(reactions with
	bromides, iodides, Fe ²⁺ and sulfites; half equations only required)
	-carry out an experiment to demonstrate the displacement reactions of metals (Zn with
	Cu ²⁺ , Mg with Cu ²⁺)

Oxidation and reduction can be described in four ways:

In terms of:

- 1. Addition/removal of oxygen.
- 2. Addition/removal of hydrogen.
- 3. Electron transfer.

1. Addition/Removal of Oxygen:

*Def*ⁿ: Oxidation is the addition of oxygen.

E.g. $C + O_2 \rightarrow CO_2$

The carbon gains oxygen, therefore the carbon is oxidised.

*Def*ⁿ: Reduction is the removal of oxygen.

E.g. $CuO + H_2 \rightarrow Cu + H_2O$

The copper loses oxygen, therefore the copper is reduced.

The sulphur loses hydrogen, therefore the S is oxidised.

2. Addition/Removal of Hydrogen:

*Def*ⁿ: Oxidation is the removal of hydrogen.

E.g. $H_2S + Cl_2 \rightarrow S + 2HCl$

*Def*ⁿ: Reduction is the addition of hydrogen.

E.g. $CO + 2H_2 \rightarrow CH_3OH$ The carbon monoxide gains hydrogen, therefore the CO is reduced.

3. Electron Transfer:

*Def*ⁿ: Oxidation is the loss of electrons.

E.g. $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$ The zinc loses $2e^{-}$, therefore the zinc is oxidised.

*Def*ⁿ: Reduction is the gain of electrons.

E.g. $\operatorname{Zn} + \operatorname{Cu}^{2+} \rightarrow \operatorname{Zn}^{2+} + \operatorname{Cu}$ The copper gains $2e^-$, therefore the copper is reduced.

Remember, for electron transfer: $O_{xidation} I_s L_{oss} R_{eduction} I_s G_{ain}$.

Oxidising/Reducing Agents:

*Def*ⁿ: An **Oxidising Agent** is a substance that brings about oxidation in other substances by being reduced.

*Def*ⁿ: A **Reducing Agent** is a substance that brings about reduction in other substances by being oxidised.