Name:

Atomic Structure	Objectives
5. Oxidation and	-define oxidation and reduction in terms of electron transfer
Reduction	-use simple examples , e.g. Na with Cl_2 , Mg with O_2 , Zn with Cu^{2+} to describe oxidation and reduction in terms of electron transfer
	-apply knowledge of oxidation and reduction to explain the rusting of iron -define oxidising agent and reducing agent
	-carry out an experiment to show that halogens act as oxidising agents(reactions with bromides, iodides, Fe ²⁺ and sulfites; half equations only required)
	-carry out an experiment to demonstrate the displacement reactions of metals (Zn with Cu ²⁺ , Mg with Cu ²⁺)
Chemical Bonding	
6. Oxidation Numbers	-define oxidation number, oxidation state
	-define oxidation and reduction in terms of change of oxidation numbers
	-state the rules for oxidation numbers (exclude peroxides, except for hydrogen peroxide)
	-calculate oxidation numbers of transition metals in their compounds and of other elements
	-use oxidation numbers in nomenclature of transition metal compounds -give an example of an oxidising and a reducing bleach

Oxidation and reduction can be described in four ways:

In terms of:

- 1. Addition/removal of oxygen.
- 2. Addition/removal of hydrogen.
- 3. Electron transfer.
- 4. Change in oxidation number.

1. Addition/Removal of Oxygen:

*Def*ⁿ: Oxidation is the addition of oxygen.

E.g. $C + O_2 \rightarrow CO_2$

The carbon gains oxygen, therefore the carbon is oxidised.

*Def*ⁿ: Reduction is the removal of oxygen.

E.g. $CuO + H_2 \rightarrow Cu + H_2O$ The copper loses oxygen, therefore the copper is reduced.

2. Addition/Removal of Hydrogen:

*Def*ⁿ: Oxidation is the removal of hydrogen.

E.g. $H_2S + Cl_2 \rightarrow S + 2HCl$ The sulphur loses hydrogen, therefore the S is oxidised.

*Def*ⁿ: Reduction is the addition of hydrogen.

E.g. $CO + 2H_2 \rightarrow CH_3OH$ The carbon monoxide gains hydrogen, therefore the CO is reduced.

3. <u>Electron Transfer:</u>

*Def*ⁿ: Oxidation is the loss of electrons.

E.g.
$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$$
 The zinc loses $2e^{-}$, therefore the zinc is oxidised.

*Def*ⁿ: Reduction is the gain of electrons.

E.g.
$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$$
 The copper gains $2e^{-}$, therefore the copper is reduced.

Remember, for electron transfer: $O_{xidation} I_s L_{oss} R_{eduction} I_s G_{ain}$.

4. Change in Oxidation Number: (Finding oxidation numbers mentioned later in these notes)

 Def^n : Oxidation is an increase in oxidation number.

E.g.
$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$
 The O.N. of H increased from 0 to +1, therefore H is oxidised.

 Def^n : Reduction is a decrease in oxidation number.

E.g.
$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$
 The O.N. of O decreased from 0 to -2, therefore O is reduced.

Oxidising/Reducing Agents:

*Def*ⁿ: An **Oxidising Agent** is a substance that brings about oxidation in other substances by being reduced.

Def": A **Reducing Agent** is a substance that brings about reduction in other substances by being oxidised.

$$\begin{array}{c} \text{+2e} \rightarrow \text{reduced} \rightarrow \text{oxidising agent} \\ \hline \\ E.g. & Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu \end{array}$$

Assigning Oxidation Numbers:

*Def*ⁿ: **Oxidation Number** is the apparent charge an atom has when electrons are distributed according to certain rules.

Rules:

- 1. The oxidation number of any element that is not bonded to another different element is 0. E.g. O.N. of H in H₂ is 0. O.N. of Na is 0. O.N. of Cl in Cl₂ is 0.
- 2. The oxidation number of an ion of an element is the same as its charge. E.g. O.N. of H in H⁺ is +1. O.N. of Ca in Ca²⁺ is +2. O.N. of Cl in Na⁺Cl⁻ is -1.
- 3. The total of the oxidation numbers in a neutral compound must add to give 0. E.g. For H_2O , each H is +1 and O is -2. This gives 2(+1)+(-2)=0.

4. Oxygen has an oxidation number of -2.

Exceptions:

- (a) Peroxides like H_2O_2 , as O.N of H = +1, each O must have an O.N. of -1 to give a total sum of 0.
- (b) In OF_2 , as O.N. of F = -1, O must have an O.N. of +2.
- 5. Hydrogen has an oxidation number of +1.

Exception:

- (a) In metal hydrides like NaH, CaH₂ (H after a metal). Here H has an O.N. of -1.
- 6. Halogens (Group VII elements) have an oxidation number of -1. Exception:
 - (a) When bonded to a more electronegative element (O or F), halogens can have other oxidation numbers which are calculated using rule 3.
- 7. The total of the oxidation numbers in a complex ion must add to give the charge on the ion. E.g. For NO₃, each O has an O.N. of -2, giving 3(-2)=-6. The total must give -1 as this is the charge on the ion. Therefore N must have an O.N. of +5.

Balancing Redox Equations:

Using oxidation numbers, balance the following equation:

$$Mn O_4^- + Fe^{2+} + H^+ \rightarrow Mn^{2+} + Fe^{3+} + H_2 O$$

1. Assign oxidation numbers:

$$Mn O_4^- + Fe^{2+} + H^+ \rightarrow Mn^{2+} + Fe^{3+} + H_2 O_{(+7) 4(-2)}$$

2. Show the number of electrons gained/lost:

3. Write the half-equations for the oxidation/reduction of the two substances above:

$$MnO_4 + 5e^- \rightarrow Mn^{2+}$$

 $Fe^{2+} - 1e^- \rightarrow Fe^{3+}$

Balance so that:

- (a) No. of Mn atoms is equal on both sides
- (b) No. of Fe atoms is equal on both sides
- (c) electrons gained = electrons lost:

$$MnO_4 + 5e^- \rightarrow Mn^{2+}$$

 $5Fe^{2+} - 5e^- \rightarrow 5Fe^{3+}$

4. Write the coefficients from step 3 into the original equation:

$$Mn O_4^- + 5Fe^{2+} + H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + H_2 O$$

5. Balance the rest of the equation by inspection (leave H until last):

$$Mn O_4^- + 5Fe^{2+} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2 O_1$$