Name:

Volumetric Analysis	Objectives
1. Concentrations of	-define solution
Solutions	-define concentration
	-define molarity
	-express concentration of solutions in mol/L(molarity), g/L and also in % (v/v)
	-appreciate the everyday use of % v/v e.g. in alcoholic beverages
	-calculate molarity from concentration in grams per litre and vice versa
	-calculate number of moles from molarity and volume
	-apply knowledge of concentrations of solutions to everyday examples
	-describe how colour intensity can be used as an indicator of concentration
	-Define a primary standard and a standard solution
	-prepare standard solution of sodium carbonate
	(balanced equations will be given in all volumetric problems)
	-identify appropriate apparatus used in volumetric analysis
3. Volumetric Analysis	-use correct titrimetric procedure when carrying out titrations
	-solve volumetric problems from first principles
	-carry out a titration between hydrochloric acid and sodium hydroxide solutions and use
	this titration to make a sample of sodium chloride (OL only)
	-standardise a hydrochloric acid solution using a standard solution of sodium carbonate

*Def*ⁿ: A *solution* is a homogeneous mixture of a solute and a solvent.

 Def^n : The *concentration* of a solution is the amount of solute dissolved in a given volume of the solution.

1. %(v/v)

Means volume of solute per 100 cm³ of solution, or cm³/100 cm³.

E.g. Alcoholic drinks – Vodka's alcohol (ethanol) concentration is 37.5% (v/v) = 37.5 cm³ ethanol in 100 cm³ vodka.

2. Parts per Million (ppm)

Means the concentration in mg/L. This is calculated by multiplying the concentration in g/L by 1000. 1000mg = 1g.

3. Molarity (M or mol/L)

This is the main unit used in the chemistry course. This means the number of moles of solute in 1 litre of solution. E.g. A 0.125 M solution of KMnO₄ has 0.125 moles of KMnO₄ in 1 litre of litre solution.

Calculations

(a) mol/L to g/L

1. How many grams of FeSO₄ are present in a solution marked 0.35 M FeSO₄?

$$M_r$$
 of $|FeSO_4 = (56) + (32) + 4(16) = 152$
We have 0.35 mol/L FeSO₄
×152 [mol to g \rightarrow × M_r]
=53.2 g/L

2. Calculate the concentration in grams per litre of bench hydrochloric acid whose concentration is 12 mol/L.

$$M_r$$
 of HCl = (1) + (35.5) = 36.5
We have 1.5 mol/L HCl \times 36.5 [mol to g $\rightarrow \times$ M_r] =54.75 g/L HCl

(b) g/L to mol/L

1. What is the molarity of a solution that contains 7.36 g of NaOH per litre of solution?

```
M_r of NaOH = (23) + (16) + (1) = 40
We have 7.36 g/L NaOH
\div 40 [g to mol \Rightarrow \div M_r]
0.184 mol/L NaOH
```

2. Calculate the concentration of a solution containing 45 g of sulphuric acid in a litre of solution.

$$M_r$$
 of $H_2SO_4 = 2(1) + (32) + 4(16) = 98$
We have 45 g/L H_2SO_4
 \div 98 [g to mol \Rightarrow \div M_r]
0.4592 mol/L H_2SO_4

(c) Calculate moles per litre, given the mass of solute and volume of solution

1. Calculate the concentration in moles per litre of a solution containing 45 grams of sulphuric acid per 240 cm³ of solution.

```
\begin{split} &M_r \text{ of } H_2SO_4 = 2(1) + (32) + 4(16) = 98 \\ &\text{We have } 45 \text{ g/}240 \text{ cm}^3 \text{ H}_2SO_4 \\ &\div 98 \qquad [\text{g to mol} \rightarrow \div M_r] \\ &= 0.4592 \text{ mol/}240 \text{ cm}^3 \text{ H}_2SO_4 \\ &\frac{0.4592}{240} \times 1000 \\ &= 1.193 \text{ mol/} L \text{ H}_2SO_4 \end{split}
```

2. 7.6 g of anhydrous Na₂CO₃ is dissolved in deionised water and made up to 300 cm³ of solution. Express the concentration of this solution in mol/L.

```
\begin{split} &M_r \text{ of } Na_2CO_3 = 2(23) + (12) + 3(16) = 106 \\ &We \text{ have } 7.6 \text{ g/}300 \text{ cm}^3 \text{ Na}_2CO_3 \\ &\div 106 \qquad [\text{g to mol} \rightarrow \div M_r] \\ &= 0.0717 \text{ mol/}300 \text{ cm}^3 \text{ Na}_2CO_3 \\ &\frac{0.0717}{300} \times 1000 \\ &= 0.239 \text{ mol/L } Na_2CO_3 \end{split}
```

(d) Compound calculations (combinations of (a) to (c))

1. What mass of sodium hydroxide is contained in 25 cm³ of a 1.5 M solution of sodium hydroxide?

$$\begin{split} &M_r \text{ of NaOH} = (23) + (16) + (1) = 40 \\ &\text{We have 1.5 mol/L NaOH} \\ &\times 40 \qquad [\text{mol to g} \rightarrow \times M_r] \\ &= 60 \text{ g/L NaOH} \\ &\frac{60}{1000} \times 25 \\ &= 1.5 \text{ g/25 cm}^3 \text{ NaOH} \end{split}$$

2. What volume of 0.01 M KMnO₄ solution will contain 5 g of KMnO₄?

$$M_r$$
 of KMnO₄ = (39) + (55) + 4(16) = 158
We have 0.01 mol/L KMnO₄
× 158 [mol to g → × M_r]
= 1.58 g/L KMnO₄. This can be rewritten as 1.58 g/1000 cm³ KMnO₄
÷1.58
= 1 g/632.9 cm³ KMnO₄
×5
= 5 g/3164.6 cm³ KMnO₄

Standard Solutions

 Def^n : A **standard solution** is one whose concentration is accurately known.

*Def*ⁿ: A **primary standard** is a substance that can be directly weighed and used to make a standard solution. It must:

- Be available in a pure and stable solid state
- Be soluble in water
- Have a high molecular mass
- Be anhydrous (no water of crystallisation)

Primary Standards: Na₂CO₃, NaCl

Not Primary Standards: HCl – it is a gas

 $I_2-it\ sublimes$

H₂SO₄ – it absorbs moisture from air

NaOH – it absorbs CO₂ and moisture from air

KMnO₄ – it is reduced by sunlight

Equipment used in Titrations

1. Pipette:

Used to accurately measure a known volume of liquids/solutions.

Procedure for cleaning, filling and transferring solutions using a pipette:

- Rinse with dionised water.
- Rinse with the solution it is to contain (name this solution if you know). [This is done to remove the water, so the solution in the pipette doesn't get diluted.]
- Using a pipette filler, fill pipette with solution until the bottom of the meniscus
- reaches the graduation mark, at eye level.
- Let the pipette drain under gravity, touching the tip of the pipette against the flask to remove the last drop stuck to the tip.

2. Burette:

Used to accurately measure the volume of liquid/solution added.

Procedure for cleaning and filling a burette:

- Rinse with deionised water.
- Rinse with the solution it is to contain (name this solution if you know). [This is done to remove the water, so the solution in the burette doesn't get diluted.]
- Clamp vertically.
- Using a funnel, fill the burette above the zero mark.
- Remove the funnel.
- Open the tap to bring the bottom of the meniscus to the zero mark, and to fill the jet below the tap.

3. Conical Flask:

A specially shaped flask that allows swirling without spilling the contents.

Procedure for cleaning the conical flask:

• Clean with deionised water only. [Any water droplets remaining won't change the number of moles of reactant you add].

Acid/Base Titrations:

1. To standardise a solution of HCl using a standard solution of Na₂CO₃.

Acid: HCl – strong acid Base: Na₂CO₃ – weak base

Indicator: Methyl OrangeColour change: Yellow to Red

Equation: $2HC1 + Na_2CO_3 \rightarrow NaC1 + H_2O + CO_2$

Ratio: 2 HCl : 1 Na₂CO₃

Page **4** of **6**

Sample calculation: (2012 HL Q1)

A student determined the concentration of a hydrochloric acid solution by titration with 25.0 cm³ portions of a 0.05 M <u>primary standard</u> solution of anhydrous sodium carbonate. The portions of sodium carbonate solution were measured into a conical flask using a 25 cm³ pipette. The hydrochloric acid solution was added from a burette. The mean titre was 20.8 cm³.

The balanced equation for the titration reaction was:

2HCl + Na₂CO₃
$$\longrightarrow$$
 2NaCl + H₂O + CO₂

- (e) Calculate, correct to two decimal places, the concentration of the hydrochloric acid solution in
 - (i) moles per litre,

(i)
$$\frac{m_1 v_1}{n_1} = \frac{m_2 v_2}{n_2}$$
$$m_1 \times 20.8 \quad 0.05 \times 10^{-10}$$

$m_1 \times 20.8$	0.05×25
2	

HCI	Na ₂ CO ₃
$m_1 = ?$	$m_2 = 0.05 M$
$v_1 = 20.8 \text{ cm}^3$	$v_2 = 25 \text{ cm}^3$
$n_1 = 2$ (from eq ⁿ)	$n_2 = 1$ (from eq ⁿ)

Cross multiply

$$m_1 \times 20.8 \times 1 = 0.05 \times 25 \times 2$$

$$m_1 \times 20.8 = 2.5$$

$$m_1 = \frac{2.5}{20.8}$$

$$m_1 = 0.12 \, mol/L$$

(ii)
$$M_r$$
 of HCl = (1) + (35.5) = 36.5
0.12 x 36.5 [mol/L to g/L \rightarrow x M_r]
= 4.38 g/L

2. To standardise a solution of NaOH using a standard solution of HCl.

Acid: HCl – strong acid Base: NaOH – strong base

Indicator: Methyl Orange

Colour change: Yellow to Red

Equation: $HCl + NaOH \rightarrow NaCl + H_2O$

Ratio: 1 HCl : 1 NaOH

After doing titration, carry out again using no indicator and your average HCl amount. Evaporate your solution to isolate a sample of pure NaCl.

Sample calculation: (2017 OL Q2)

Hydrochloric acid (HCl) of known concentration was added from a burette to neutralise 25.0 cm³ portions of sodium hydroxide (NaOH) solution of unknown concentration in a concical flask. Each portion of sodium hydroxide solution had been measured out using a pipette. One rough titration and a number of accurate titrations were carried out.

The burette readings noted in this experiment were:

19.9 cm³ HCl for the rough titration and 19.6 cm³ and 19.5 cm³ for the following two accurate titrations.

- (d) (ii) What average hydrochloric acid volume should be used in calculations?
- (e) The equation for the titration reaction is:

$$HCl + NaOH \rightarrow NaCl + H_2O$$

The concentration of the hydrochloric acid solution was 0.10 M.

Calculate the concentration of the sodium hydroxide solution

- (i) in moles per litre,
- (ii) in grams per litre.

(d) (ii)
$$\frac{19.6+19.5}{2} = 19.55 \ cm^3$$

(e) (i)
$$\frac{m_1 v_1}{n_1} = \frac{m_2 v_2}{n_2}$$

$$\frac{0.10 \times 19.55}{1} = \frac{m_2 \times 25}{1}$$

Cross multiply

$$0.10 \times 19.55 \times 1 = m_2 \times 25 \times 1$$

$$m_2 \times 25 = 1.955$$

$$m_2 = \frac{1.955}{25}$$

$$m_2 = 0.0782 \, mol/L$$

(iii) (ii)
$$M_r$$
 of NaOH = (23) + (16) + (1) = 40
0.0782 x 40 [mol/L to g/L \rightarrow x M_r]
= 3.128 g/L

HCI	NaOH
$m_1 = 0.10 M$	$m_2 = ?$
$v_1 = 19.55 \text{ cm}^3$	$v_2 = 25 \text{ cm}^3$
$n_1 = 1$ (from eq ⁿ)	$n_2 = 1$ (from eq ⁿ)