Name:

Volumetric Analysis	Objectives
1. Concentrations of Solutions	-define solution
	-define concentration
	-define molarity
	-express concentration of solutions in mol/L(molarity), g / L and also in \% (w/v), \% (v/v), \% (w/w)
	-appreciate the everyday use of \% v/v e.g. in alcoholic beverages
	-calculate molarity from concentration in grams per litre and vice versa
	-calculate number of moles from molarity and volume
	-perform simple calculations involving percentage concentrations
	-calculate the effect of dilution on concentration
	-apply knowledge of concentrations of solutions to everyday examples
	-describe how colour intensity can be used as an indicator of concentration
	--Define a primary standard and a standard solution
	-prepare standard solution of sodium carbonate
3. Volumetric Analysis	(balanced equations will be given in all volumetric problems)
	-identify appropriate apparatus used in volumetric analysis
	-use correct titrimetric procedure when carrying out titrations
	-solve volumetric problems from first principles
	-carry out a titration between hydrochloric acid and sodium hydroxide solutions and use this titration to make a sample of sodium chloride (OL only)
	-standardise a hydrochloric acid solution using a standard solution of sodium carbonate
	-calculate the relative molecular mass of a compound and of the amount of water of crystallisation in a compound from titration data
	(balanced equations will be given in all volumetric problems)
	-determine the concentration of ethanoic acid in vinegar
	-determine the amount of water of crystallisation in hydrated sodium carbonate

$D e f^{n}$: A solution is a homogeneous mixture of a solute and a solvent.
$D e f^{n}$: The concentration of a solution is the amount of solute dissolved in a given volume of the solution.

1. $\%(\mathrm{w} / \mathrm{w})$

Means grams of solute per 100 g of solution, or $\mathrm{g} / 100 \mathrm{~g}$.
E.g. saline solution, $1 \%(\mathrm{w} / \mathrm{w}) \mathrm{NaCl}=1 \mathrm{~g} \mathrm{NaCl}$ in $100 \mathrm{~cm}^{3}$ solution.
2. $\%(w / v)$

Means grams of solute per $100 \mathrm{~cm}^{3}$ of solution, or $\mathrm{g} / 100 \mathrm{~cm}^{3}$.
E.g. $37 \%(\mathrm{w} / \mathrm{v}) \mathrm{HCl}=37 \mathrm{~g} \mathrm{HCl}$ in $100 \mathrm{~cm}^{3}$ solution.
3. $\%(v / v)$

Means volume of solute per $100 \mathrm{~cm}^{3}$ of solution, or $\mathrm{cm}^{3} / 100 \mathrm{~cm}^{3}$.
E.g. Alcoholic drinks - Vodka's alcohol (ethanol) concentration is $37.5 \%(\mathrm{v} / \mathrm{v})=37.5 \mathrm{~cm}^{3}$ ethanol in $100 \mathrm{~cm}^{3}$ vodka.

4. Parts per Million (ppm)

Means the concentration in mg / L. This is calculated by multiplying the concentration in g / L by 1000 .
$1000 \mathrm{mg}=1 \mathrm{~g}$.

5. Molarity (M or mol/L)

This is the main unit used in the chemistry course. This means the number of moles of solute in 1 litre of solution. E.g. A 0.125 M solution of KMnO_{4} has 0.125 moles of KMnO_{4} in 1 litre of litre solution.

Calculations

(a) $\mathrm{mol} / \mathrm{L}$ to g / L

1. How many grams of FeSO_{4} are present in a solution marked $0.35 \mathrm{M} \mathrm{FeSO}_{4}$?
M_{r} of $\mid \mathrm{FeSO}_{4}=(56)+(32)+4(16)=152$
We have $0.35 \mathrm{~mol} / \mathrm{L} \mathrm{FeSO}_{4}$
$\times 152 \quad\left[\mathrm{~mol}\right.$ to $\mathrm{g} \rightarrow \times \mathrm{M}_{\mathrm{r}}$]
$=53.2 \mathrm{~g} / \mathrm{L}$
2. Calculate the concentration in grams per litre of bench hydrochloric acid whose concentration is $12 \mathrm{~mol} / \mathrm{L}$.
M_{r} of $\mathrm{HCl}=(1)+(35.5)=36.5$
We have $12 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$
$\times 36.5 \quad\left[\mathrm{~mol}\right.$ to $\mathrm{g} \rightarrow \times \mathrm{M}_{\mathrm{r}}$]
$=438 \mathrm{~g} / \mathrm{L} \mathrm{HCl}$
(b) g / L to $\mathrm{mol} / \mathrm{L}$
3. What is the molarity of a solution that contains 7.36 g of NaOH per litre of solution?
M_{r} of $\mathrm{NaOH}=(23)+(16)+(1)=40$
We have $7.36 \mathrm{~g} / \mathrm{L} \mathrm{NaOH}$
$\div 40 \quad$ [g to $\mathrm{mol} \rightarrow \div \mathrm{M}_{\mathrm{r}}$]
$0.184 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$
4. Calculate the concentration of a solution containing 45 g of sulphuric acid in a litre of solution.
M_{r} of $\mathrm{H}_{2} \mathrm{SO}_{4}=2(1)+(32)+4(16)=98$
We have $45 \mathrm{~g} / \mathrm{L} \mathrm{H}_{2} \mathrm{SO}_{4}$
$\div 98 \quad\left[\mathrm{~g}\right.$ to $\mathrm{mol} \rightarrow \div \mathrm{M}_{\mathrm{r}}$]
$0.4592 \mathrm{~mol} / \mathrm{L} \mathrm{H}_{2} \mathrm{SO}_{4}$
(c) How many moles in a certain volume, given the solution's molarity
5. Calculate how many moles of $\mathrm{CH}_{3} \mathrm{COOH}$ are present in $25 \mathrm{~cm}^{3}$ of $0.55 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$.

We have $0.55 \mathrm{~mol} / \mathrm{L} \mathrm{CH}_{3} \mathrm{COOH}$
$\frac{0.55}{1000} \times 25$
$=0.01375 \mathrm{~mol} / 25 \mathrm{~cm}^{3} \mathrm{CH}_{3} \mathrm{COOH}$

If question was phrased "Calculate how many grams of $\mathrm{CH}_{3} \mathrm{COOH}$ are present in $25 \mathrm{~cm}^{3}$ of $0.55 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ ", we would then have to multiply 0.01375 by the M_{r} of $\mathrm{CH}_{3} \mathrm{COOH}$.
2. How many moles of HCl are present in $60 \mathrm{~cm}^{3}$ of 0.4 M HCl ?

We have $0.4 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$
$\frac{0.4}{1000} \times 60$
$=0.024 \mathrm{~mol} / 60 \mathrm{~cm}^{3} \mathrm{HCl}$
(d) Calculate moles per litre, given the mass of solute and volume of solution

1. Calculate the concentration in moles per litre of a solution containing 45 grams of sulphuric acid per $240 \mathrm{~cm}^{3}$ of solution.
M_{r} of $\mathrm{H}_{2} \mathrm{SO}_{4}=2(1)+(32)+4(16)=98$
We have $45 \mathrm{~g} / 240 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{SO}_{4}$
$\div 98 \quad\left[\mathrm{~g}\right.$ to $\mathrm{mol} \rightarrow \div \mathrm{M}_{\mathrm{r}}$]
$=0.4592 \mathrm{~mol} / 240 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{SO}_{4}$
$\frac{0.4592}{240} \times 1000$
$=1.193 \mathrm{~mol} / \mathrm{L} \mathrm{H}_{2} \mathrm{SO}_{4}$
2. 7.6 g of anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is dissolved in deionised water and made up to $300 \mathrm{~cm}^{3}$ of solution. Express the concentration of this solution in $\mathrm{mol} / \mathrm{L}$.
M_{r} of $\mathrm{Na}_{2} \mathrm{CO}_{3}=2(23)+(12)+3(16)=106$
We have $7.6 \mathrm{~g} / 300 \mathrm{~cm}^{3} \mathrm{Na}_{2} \mathrm{CO}_{3}$
$\div 106 \quad\left[\mathrm{~g}\right.$ to $\mathrm{mol} \rightarrow \div \mathrm{M}_{\mathrm{r}}$]
$=0.0717 \mathrm{~mol} / 300 \mathrm{~cm}^{3} \mathrm{Na}_{2} \mathrm{CO}_{3}$
$\frac{0.0717}{300} \times 1000$
$=0.239 \mathrm{~mol} / \mathrm{L} \mathrm{Na}_{2} \mathrm{CO}_{3}$
(e) Compound calculations (combinations of (a) to (d))
3. What mass of sodium hydroxide is contained in $25 \mathrm{~cm}^{3}$ of a 1.5 M solution of sodium hydroxide?
M_{r} of $\mathrm{NaOH}=(23)+(16)+(1)=40$
We have $1.5 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$
$\times 40 \quad\left[\mathrm{~mol}\right.$ to $\mathrm{g} \rightarrow \times \mathrm{M}_{\mathrm{r}}$]
$=60 \mathrm{~g} / \mathrm{L} \mathrm{NaOH}$
$\frac{60}{1000} \times 25$
$=1.5 \mathrm{~g} / 25 \mathrm{~cm}^{3} \mathrm{NaOH}$
4. What volume of $0.01 \mathrm{M} \mathrm{KMnO}_{4}$ solution will contain 5 g of KMnO_{4} ?
M_{r} of $\mathrm{KMnO}_{4}=(39)+(55)+4(16)=158$
We have $0.01 \mathrm{~mol} / \mathrm{L} \mathrm{KMnO}_{4}$
$\times 158 \quad\left[\mathrm{~mol}\right.$ to $\mathrm{g} \rightarrow \times \mathrm{M}_{\mathrm{r}}$]
$=1.58 \mathrm{~g} / \mathrm{L} \mathrm{KMnO}_{4}$. This can be rewritten as $1.58 \mathrm{~g} / 1000 \mathrm{~cm}^{3} \mathrm{KMnO}_{4}$
$\div 1.58$
$=1 \mathrm{~g} / 632.9 \mathrm{~cm}^{3} \mathrm{KMnO}_{4}$
$\times 5$
$=5 \mathrm{~g} / 3164.6 \mathrm{~cm}^{3} \mathrm{KMnO}_{4}$

Dilution of solutions

To find the volume of a concentrated solution needed to make a less concentrated solution, use the formula:

$$
\mathrm{V}_{\mathrm{c}} \times \mathrm{M}_{\mathrm{c}}=\mathrm{V}_{\mathrm{d}} \times \mathrm{M}_{\mathrm{d}}
$$

$\mathrm{V}_{\mathrm{c}}=$ Volume of concentrated solution
$\mathrm{M}_{\mathrm{c}}=$ Molarity of concentrated solution
$\mathrm{V}_{\mathrm{d}}=$ Volume of dilute solution
$\mathrm{M}_{\mathrm{d}}=$ Molarity of dilute solution

Examples:

1. What volume of 12 M HCl is needed to make up $500 \mathrm{~cm}^{3}$ of 3 M HCl solution?

$$
\begin{gathered}
V_{c} \times M_{c}=V_{d} \times M_{d} \\
V_{c} \times 12=500 \times 3 \\
\frac{500 \times 3}{12}=V_{d} \\
125 \mathrm{~cm}^{3}=V_{d}
\end{gathered}
$$

2. $15 \mathrm{~cm}^{3}$ of $2 \mathrm{M} \mathrm{HNO}_{3}$ solution is diluted to $250 \mathrm{~cm}^{3}$ in a volumetric flask. What is the new concentration of the nitric acid?

$$
\begin{gathered}
V_{c} \times M_{c}=V_{d} \times M_{d} \\
15 \times 2=250 \times M_{d} \\
\frac{15 \times 2}{250}=M_{d} \\
0.12 M=M_{d}
\end{gathered}
$$

Standard Solutions

$D e f^{n}$: A standard solution is one whose concentration is accurately known.
$D e f^{n}$: A primary standard is a substance that can be directly weighed and used to make a standard solution. It must:

- Be available in a pure and stable solid state
- Be soluble in water
- Have a high molecular mass
- Be anhydrous (no water of crystallisation)

Primary Standards: $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaCl}$
Not Primary Standards: $\quad \mathrm{HCl}-\mathrm{it}$ is a gas
I_{2} - it sublimes
$\mathrm{H}_{2} \mathrm{SO}_{4}$ - it absorbs moisture from air
NaOH - it absorbs CO_{2} and moisture from air
KMnO_{4} - it is reduced by sunlight

Equipment used in Titrations

1. Pipette:

Used to accurately measure a known volume of liquids/solutions.
Procedure for cleaning, filling and transferring solutions using a pipette:

- Rinse with dionised water.
- Rinse with the solution it is to contain (name this solution if you know). [This is done to remove the water, so the solution in the pipette doesn't get diluted.]
- Using a pipette filler, fill pipette with solution until the bottom of the meniscus
- reaches the graduation mark, at eye level.

- Let the pipette drain under gravity, touching the tip of the pipette against the flask to remove the last drop stuck to the tip.

2. Burette:

Used to accurately measure the volume of liquid/solution added.
Procedure for cleaning and filling a burette:

- Rinse with deionised water.
- Rinse with the solution it is to contain (name this solution if you know). [This is done to remove the water, so the solution in the burette doesn't get diluted.]
- Clamp vertically.
- Using a funnel, fill the burette above the zero mark.
- Remove the funnel.
- Open the tap to bring the bottom of the meniscus to the zero mark, and to fill the jet below the tap.

3. Conical Flask:

A specially shaped flask that allows swirling without spilling the contents.

Procedure for cleaning the conical flask:

- Clean with deionised water only. [Any water droplets remaining won't change the number of moles of reactant you add].

Acid/Base Titrations:

1. To standardise a solution of HCl using a standard solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

Acid: HCl - strong acid
Base: $\mathrm{Na}_{2} \mathrm{CO}_{3}$ - weak base
Indicator: Methyl Orange (SAWBMO)
Colour change: Yellow to Red
Equation:

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Ratio:
$2 \mathrm{HCl}: 1 \mathrm{Na}_{2} \mathrm{CO}_{3}$

Sample calculation: (2012 HL Q1)
A student determined the concentration of a hydrochloric acid solution by titration with $25.0 \mathrm{~cm}^{3}$ portions of a 0.05 M primary standard solution of anhydrous sodium carbonate. The portions of sodium carbonate solution were measured into a conical flask using a $25 \mathrm{~cm}^{3}$ pipette. The hydrochloric acid solution was added from a burette. The mean titre was $20.8 \mathrm{~cm}^{3}$.

The balanced equation for the titration reaction was:

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

(e) Calculate, correct to two decimal places, the concentration of the hydrochloric acid solution in
(i) moles per litre,
(ii) grams per litre.
(i) We have $0.05 \mathrm{~mol} / \mathrm{L} \mathrm{Na}_{2} \mathrm{CO}_{3}$
$\frac{0.05 \times 25}{1000}$
$=0.00125 \mathrm{~mol} / 25 \mathrm{~cm}^{3} \mathrm{Na}_{2} \mathrm{CO}_{3}$

HCl	$:$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$
2	$:$	1
0.0025	$:$	0.00125

$0.0025 \mathrm{~mol} / 20.8 \mathrm{~cm}^{3} \mathrm{HCl}$
$\frac{0.0025 \times 1000}{20.8}$
$=0.12 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$
(ii) $\quad \mathrm{M}_{\mathrm{r}}$ of $\mathrm{HCl}=(1)+(35.5)=36.5$
$0.12 \times 36.5=4.38 \mathrm{~g} / \mathrm{L} \mathrm{HCl} \quad\left[\mathrm{mol}\right.$ to $\left.\mathrm{g} \rightarrow \times \mathrm{M}_{\mathrm{r}}\right]$

2. To determine the concentration of ethanoic acid in vinegar

Acid: $\mathrm{CH}_{3} \mathrm{COOH}$ - weak acid Base: $\mathrm{NaOH}-$ strong base
Indicator: Phenolphthalein (WASBPH)
Colour change: Pink to Colourless [NOT "clear"!]
Equation: $\quad \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
Ratio: $\quad 1 \mathrm{CH}_{3} \mathrm{COOH}: 1 \mathrm{NaOH}$
Notes: \quad Vinegar must be diluted beforehand because it is too concentrated. Make sure to multiply the concentration of the dilute vinegar by the dilution factor to find the concentration of the original vinegar.

Dilution factor $=\frac{\text { Volume of Diluted Vinegar }}{\text { Volume of Original Vinegar }}$
Clear vinegar should be used to ensure the endpoint is clearly seen.

Sample calculation: (2016 HL Q1)
To determine the concentration of ethanoic acid in a sample of vinegar, $25.0 \mathrm{~cm}^{3}$ of the vinegar were diluted to $250 \mathrm{~cm}^{3}$ and then the diluted vinegar was titrated with a previously standardised solution which contained 1.20 g of sodium hydroxide in $500 \mathrm{~cm}^{3}$ of solution. On average, $18.75 \mathrm{~cm}^{3}$ of the diluted vinegar were required to neutralise $25.0 \mathrm{~cm}^{3}$ of this sodium hydroxide solution.

The equation for the titration reaction is:
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
(c) Calculate
(i) the number of moles of sodium hydroxide in each $25.0 \mathrm{~cm}^{3}$ portion,
(ii) the number of moles of ethanoic acid per cm^{3} of diluted vinegar.
(d) Find the concentration of ethanoic acid in the original vinegar
(i) in terms of moles per litre,
(ii) as a percentage (w / v).
(c)
(i) We have $1.20 \mathrm{~g} / 500 \mathrm{~cm}^{3} \mathrm{NaOH}$
M_{r} of $\mathrm{NaOH}=(23)+(16)+(1)=40$
$1.20 \div 40 \quad$ [g to $\mathrm{mol} \rightarrow \div \mathrm{M}_{\mathrm{r}}$]
$=0.03 \mathrm{~mol} / 500 \mathrm{~cm}^{3} \mathrm{NaOH}$
$\frac{0.03 \times 25}{500}$
$=0.0015 \mathrm{~mol} / 25 \mathrm{~cm}^{3} \mathrm{NaOH}$
(ii) $\begin{array}{llll}\mathrm{CH}_{3} \mathrm{COOH} & : & \mathrm{NaOH} \\ & 1 & : & 1 \\ & 0.0015 & : & 0.0015\end{array}$
$0.0015 \mathrm{~mol} / 18.75 \mathrm{~cm}^{3} \mathrm{CH}_{3} \mathrm{COOH}$ (dilute)
$\frac{0.0015 \times 1}{18.75}$
$=0.00008 \mathrm{~mol} / 1 \mathrm{~cm}^{3} \mathrm{CH}_{3} \mathrm{COOH}$ (dilute)
(d)
(i) $0.00008 \mathrm{~mol} / 1 \mathrm{~cm}^{3} \mathrm{CH}_{3} \mathrm{COOH}$ (dilute)
$\times 10$
$=0.0008 \mathrm{~mol} / 1 \mathrm{~cm}^{3} \mathrm{CH}_{3} \mathrm{COOH}$ (original)
$\times 1000$
$=0.8 \mathrm{~mol} / \mathrm{L} \mathrm{CH}_{3} \mathrm{COOH}$ (original)
(ii) $\quad \%(\mathrm{w} / \mathrm{v})$ means $\mathrm{g} / 100 \mathrm{~cm}^{3}$

We have $0.8 \mathrm{~mol} / \mathrm{L} \mathrm{CH}_{3} \mathrm{COOH}$ (original) $\quad \mathrm{M}_{\mathrm{r}}$ of $\mathrm{CH}_{3} \mathrm{COOH}=(12)+3(1)+(12)+(16)+(16)+(1)=60$
$\times 60 \quad$ [mol to $\mathrm{g} \rightarrow \times \mathrm{Mr}_{\mathrm{r}}$]
$=48 \mathrm{~g} / \mathrm{L} \mathrm{CH}_{3} \mathrm{COOH}$ (original)
$\div 10$
$=4.8 \mathrm{~g} / 100 \mathrm{~cm}^{3} \mathrm{CH}_{3} \mathrm{COOH}$ (original)
$=4.8 \%(\mathrm{w} / \mathrm{v})$

3. To determine the amount of water of crystallisation in washing soda (hydrated sodium carbonate)

Acid: HCl - strong acid
Base: $\mathrm{Na}_{2} \mathrm{CO}_{3}$ - weak base
Indicator: \quad Methyl Orange (SAWBMO)
Colour change: Yellow to Red
Equation: $\quad 2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
Ratio:
$2 \mathrm{HCl}: 1 \mathrm{Na}_{2} \mathrm{CO}_{3}$
Notes: \quad Same as titration number 1, just with extra calculations.
The crystals are made up of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$. We need to find 2 things:
1- the percentage of water of crystallisation, and
2 - the value of x.
These calculations can also come up for other compounds - not just in in this experiment, e.g. finding the percentage water of crystallisation and value for x in hydrated copper (II) sulphate, $\mathrm{CuSO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}$.

Sample Calculation:

An experiment was carried out to determine the percentage water of crystallisation and the degree of water of crystallisation, \mathbf{x}, in a sample of hydrated sodium carbonate crystals $\left(\mathbf{N a}_{\mathbf{2}} \mathbf{C O}_{\mathbf{3}} \cdot \mathbf{x} \mathbf{H}_{\mathbf{2}} \mathbf{O}\right)$. An 8.20 g sample of the crystals was weighed accurately on a clock glass and then made up to $500 \mathrm{~cm}^{3}$ of solution in a volumetric flask. A pipette was used to transfer $25.0 \mathrm{~cm}^{3}$ portions of this solution to a conical flask. A previously standardised 0.11 M hydrochloric acid (HCl) solution was used to titrate each sample. A number of accurate titrations were carried out. The average volume of hydrochloric acid solution required in these titrations was $26.05 \mathrm{~cm}^{3}$.

The titration reaction is described by the equation:

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathbf{H}_{2} \mathrm{O}
$$

(d) From the titration figures, calculate the concentration of sodium carbonate $\left(\mathbf{N a}_{2} \mathbf{C O}_{3}\right)$ in the solution in (i) moles per litre,
(ii) grams per litre.
(e) Calculate the percentage water of crystallisation present in the crystals and the value of \mathbf{x}, the degree of hydration of the crystals.
(d)
(i) \quad We have $0.11 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$

$$
\begin{aligned}
& \frac{0.11 \times 26.05}{1000} \\
& =0.0028655 \mathrm{~mol} / 26.05 \mathrm{~cm}^{3} \mathrm{HCl}
\end{aligned}
$$

HCl	$:$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$
2	$:$	1
0.0028655	$:$	0.00143275

$0.00143275 \mathrm{~mol} / 25 \mathrm{~cm}^{3} \mathrm{Na}_{2} \mathrm{CO}_{3}$
$\frac{0.00143275 \times 1000}{25}$
$=0.05731 \mathrm{~mol} / \mathrm{L} \mathrm{Na}_{2} \mathrm{CO}_{3}$
(ii) $\quad \mathrm{M}_{\mathrm{r}}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}=2(23)+(12)+3(16)=106$
$\times 106 \quad\left[\mathrm{~mol}\right.$ to $\mathrm{g} \rightarrow \times \mathrm{M}_{\mathrm{r}}$]
$=6.07486 \mathrm{~g} / \mathrm{L} \mathrm{Na}_{2} \mathrm{CO}_{3}$
(e)
(i)

$$
\text { Percentage water of crystallisation }=\frac{\text { Mass of water in your sample }}{\text { Mass of your sample }} \times 100
$$

We had $6.07486 \mathrm{~g} / \mathrm{L} \mathrm{Na}_{2} \mathrm{CO}_{3}$ but we only made $500 \mathrm{~cm}^{3}$ of the solution.
$\div 2$
$=3.03743 \mathrm{~g} / 500 \mathrm{~cm}^{3} \mathrm{Na}_{2} \mathrm{CO}_{3}$ in our solution.

But we weighed out 8.20 g of crystals.
The extra mass is the mass of water.
$8.20-3.03743$
$=5.16257 \mathrm{~g}$ of water in our crystals
$\%$ water of crystallisation $=\frac{5.16257}{8.20} \times 100$
(ii)
$\frac{\text { Mass of } \mathrm{Na}_{2} \mathrm{CO}_{3}}{M_{r} \text { of } \mathrm{Na}_{2} \mathrm{CO}_{3}}=\frac{\text { Mass of } x \mathrm{H}_{2} \mathrm{O}}{M_{r} \text { of } x \mathrm{H}_{2} \mathrm{O}}$
M_{r} of $x \mathrm{H}_{2} \mathrm{O}=x[2(1)+(16)]=18 x$
$\frac{3.03743}{106}=\frac{5.16257}{18 x}$
$x=\frac{5.16257 \times 106}{18 \times 3.03743}$
$x=10 \quad$ [round to a whole number if possible]
This means our crystals are actually made up of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

