Name:

Stoichiometry, Formulas and Equations	Objectives
10. Properties of Gases	-State and explain Boyle's law -describe the significance of Boyle' air pump -state and explain Charles's law -carry out simple calculations using the combined gas law $\underline{P}_{1} \underline{V_{1}}=\underline{P_{2}} \underline{V_{2}} \underline{2}=$ constant

$D e f^{n}$: A gas is a substance that has no well-defined boundaries and diffuses rapidly to fill any container in which it is placed.

Temperature:

We use the Kelvin scale of temperature often for calculations.

- To convert ${ }^{\circ} \mathrm{C}$ to K , add 273.
- $0^{\circ} \mathrm{C}=273 \mathrm{~K}=$ standard temperature

Pressure:

Units used are Pascals (Pa).

- $1 \mathrm{kPa}=1,000 \mathrm{~Pa}$
- $1 \mathrm{hPa}=100 \mathrm{~Pa}$
- $1 \times 10^{5} \mathrm{~Pa}=100 \mathrm{kPa}=$ normal atmospheric pressure $=$ standard pressure

Volume:

Units used are m^{3}

- $1 \mathrm{~L}=1 \mathrm{dm}^{3}=1,000 \mathrm{~cm}^{3}$
- $1 \mathrm{~m}^{3}=1,000 \mathrm{~L}=1 \times 10^{6} \mathrm{~cm}^{3}=1,000,000 \mathrm{~cm}^{3}$

Standard Temperature and Pressure (s.t.p.)

The conditions of s.t.p. are:

1. $100,000 \mathrm{~Pa}$ of pressure
2. 273 K in temperature

Gas Laws:

1. Boyle's Law:

At constant temperature, the volume of a fixed mass of a gas is inversely proportional to its pressure.
2. Charles' Law:

At constant pressure, the volume of a fixed mass of a gas is directly proportional to its Kelvin temperature.

3. The Combined Gas Law:

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

$$
\begin{array}{ll}
\mathrm{P}_{1}=\text { Initial Pressure } & \mathrm{P}_{2}=\text { Final Pressure } \\
\mathrm{V}_{1}=\text { Initial Volume } & \mathrm{V}_{2}=\text { Final Volume } \\
\mathrm{T}_{1}=\text { Initial Temperature }(\mathrm{K}) & \mathrm{T}_{2}=\text { Final Temperature }(\mathrm{K}) \\
\hline
\end{array}
$$

This equation is used when the initial conditions of Pressure, Volume and Temperature of a gas are given. Also given are two final conditions. You are asked to find the missing $3^{\text {rd }}$ final condition (either a P, V or T)

Notes: 1 mole of any gas at s.t.p. occupies a volume of 22.4 L .
1 mole of any gas at room temperature and pressure occupies a volume of 24 L .

Experiment: To measure the relative molecular mass of a volatile liquid.

1. Find the mass of a clean, dry conical flask, some aluminium foil and a rubber band.
2. Place some of the volatile liquid into the conical flask.
3. Seal liquid in flask using the foil as a cap, securing with the aluminium foil.
4. Make a small pinhole in the top of the foil. This allows the excess vapour to exit the flask, and keeps the contents at the same pressure as the room.
5. Submerge the flask to the neck in boiling water until the liquid is fully vapourised.
6. Remove flask from boiling water and allow to cool. Vapour condenses back into a liquid. Dry the outside of the flask.
7. Find the mass of the conical flask, foil cap, rubber band and condensed vapour. Subtract the mass found in step 1 from this mass to get the mass of the condensed vapour.

Calculations:

1. Use $P V=n R T$ to find the number of moles of vapour which was present in the flask.

- $\mathrm{P}=$ Pressure in the room found using a barometer.
- $V=$ Volume (in m^{3}) of the conical flask. Find this by filling conical flask to the brim with water and emptying into a graduated cylinder.
- $\mathrm{n}=$?
- $\mathrm{R}=8.3$
- $\mathrm{T}=$ Temperature of the boiling water (use a thermometer and convert to K)

2. Find the Relative Molecular Mass of the volatile liquid using the formula:

$$
\mathrm{M}_{\mathrm{r}}=\frac{\text { Mass of Condensed Liquid }}{\mathrm{n}}
$$

Mass of the condensed liquid comes from step 7 of the procedure
n is the number of moles of vapour in the flask. This number is your answer to the equation above in step 1 of the calculations.

